Roll No.

Subject Code—3226

M. Sc. EXAMINATION

(First Semester)

MATHEMATICS

MAL-512'

Real Analysis

Time: 3 Hours Maximum Marks: 100

Note: Attempt any *Five* questions. All questions carry equal marks.

- 1. (a) Discuss the uniform convergence of the sequence $\{f_n\}$ where $f_n(x) = x^n$, $0 \le x \le 1$.
 - (b) State and prove Cauchy's criterion for uniform convergence of sequences.

- (c) Show that the series $\sum \frac{x}{n^p + x^2 n^q}$ converges uniformally over any finite interval [a, b] for (i) p > 1, $q \ge 0$.

 (ii) 0 , <math>p + q > 2.
- 2. (a) State and prove Dirichlet's tests for uniform convergence of series.
 - (b) Show that the series $\sum \frac{\cos n\theta}{n^p}$ converges uniformally for all values of p > 0 in the interval $[\alpha, 2\pi \alpha]$ where $0 < \alpha < \pi$.
 - (c) Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with unit radius of convergence and let $f(x) = \sum_{n=0}^{\infty} a_n x^n, -1 < x < 1.$ If the series $\sum_{n=0}^{\infty} a_n x^n$ converges; then :

- 3. (a) State and prove Weierstrass Approximation theorem. 13
 - (b) Let E be an open set in Rⁿ and f maps
 E in R^m and x ∈ E. Let h ∈ Rⁿ is small enough such that x + h ∈ E. Then f has a unique derivative.
- 4. (a) If (i) f_x and f_y exist in the neighbourhood of the point (a, b) and (ii) f_x and f_y are differentiable at (a, b), then $f_{xy} = f_{yx}$.
 - (b) If $f(x, y) = \sqrt{|xy|}$, prove that Taylor's expansion about the point (x, x) is not valid in any domain which includes the origin.
- 5. (a) Find the maximum and minimum values of $x^2 + y^2 + z^2$ subject to the condition:

$$\frac{x^2}{4} + \frac{y^2}{5} + \frac{z^2}{25} = 1$$
 and $z = x + y$.

- (b) If J is the Jacobian of the system u, v with respect to x and y and J' is the Jocobian of x and y w.r.t. u and v, then show that JJ' = 1.
- 6. (a) If $f_1, f_2 \in R(\alpha)$ and C is a constant, then show that :
 - (i) $(f_1 + f_2) \in R(\alpha)$ and

$$\int_a^b (f_1 + f_2) d\alpha = \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha$$

(ii) $Cf \in R(\alpha)$ and

$$\int_{a}^{b} cf \ d\alpha = c \int_{a}^{b} f \ d\alpha$$

- (b) Define a rectifiable curve. If r' is continuous on [a, b], then r is rectifiable and has length $\int_a^b |r'(t)| dt$.
- (a) Define outer measure and show that it is countable subadditive and translation invariant.
 - (b) Show that the interval (a, b) is measurable.

5 . 4 . amed (40.) - 21.23

8. (a) Let $\{E_i\}$ be an infinite decreasing sequence of measurable sets with $m^*(E_1) < \infty$. Then:

$$m^* \left(\bigcap_{i=1}^{\infty} \mathbf{E}_i\right) = \lim_{h \to \infty} m^* \left(\mathbf{E}_n\right)$$

Also show that $m(E_1) < \infty$ is necessary in above theorem to hold true.

(b) Show that there exists a non-measurable set in the interval [0, 1).